Selective Solid Phase Extraction and Separation of Rare Earth Elements on Silica Based Nanoparticles before their Determination by Inductively Coupled Plasma Mass-spectrometry

Abstract

Silica based adsorbents with covalently immobilized fragments of N-Benzoyl-Nphenylhydroxylamine (BPHA), 2,6-pyridinedicarboxylic acid (PdCA) and amino-di(methylenephosphonic) acid (AdMPA) have been obtained in multi-step surface synthesis. Functionalized materials were characterized by elemental, FTIR, solid-state NMR, TGA and XPS analysis. For the materials, degree of functionalization, concentration of surface immobilized groups (C_{BPHA} = 0.3 mmol g^{-1} , $C_{PDCA} = 0.36$ mmol g^{-1} , $C_{ADMPA} = 0.29$ mmol g^{-1}), characteristics and surface properties were evaluated. Affinity of the adsorbent to the 16 trivalent rare-earth ions in multicomponent system has been investigated in aqueous solution. Adsorbents demonstrate reversible adsorption and very high kinetic characteristics. Complete adsorption/desorption process was observed for 10 min. It has been demonstrated that SiO₂-PdCA and SiO₂-AdMPA can be successfully used as adsorbent for removal of REE ions from aqueous solution at pH \geq 2. The adsorbents provide high recovery (>95%) of all REE in presence of 50-fold excess of Ba²⁺ ions. SiO₂-BPHA quantitatively adsorbs most of REE from solution with pH \ge 5 and provide selectivity towards heavy and light REEs (separation factor, SF Lu/La = 81) in the presence of other ions. Ions, Fe³⁺, Cu²⁺, Ca²⁺, Mg²⁺, Na⁺, K⁺, Al³⁺ which are predominate in environmental objects in 200-fold excess caused little or no interference on the determination of REE. The adsorbents can be reused up to 5 cycles with no significant loss in REEs recovery using 0.1M HNO₃ as desorbing agent. After adsorption of Eu³⁺ and Tb³⁺ ions, SiO₂-PdCA and SiO₂-AdMPA adsorbents demonstrate strong red and green luminescent and can be used as luminescent probes for monitoring of Eu^{3+} and Tb^{3+} ions in solution.

Keyword: silica based adsorbent, solid phase extraction, preconcentration, separation, rare earth elements (REEs), ICP-MS.